Transition to telematics 000000000000 Data and results 0000000000 Going forward to optimal pricing

1/45

Driving data for automobile insurance: will telematics change ratemaking?

Montserrat Guillén

University of Barcelona mguillen@ub.edu www.ub.edu/riskcenter

SAV, Lucerne, Friday 30 August 2019

2 Transition to telematics motor insurance

3 Data and results

4 Going forward to optimal pricing

Fransition to telematics

Data and results

Going forward to optimal pricing 000000

500

1 Introduction

Transition to telematic

Data and results 0000000000 Going forward to optimal pricing

How do telematics data look like?

Sample Trip Summary Data - One Day

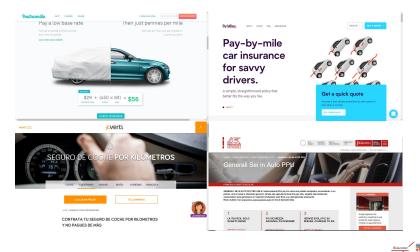
State Date	Start Time	Motorway Yards	Urban Yards	Other Yards	Motorway Seconds	Urban Seconds	Other Seconds	Total Speeding Yards	Total Speeding Seconds
3/3/2012	12:12:00	-	31			13,713		-	
3/3/2012	14:17:11		3,355			7,934		-	
3/3/2012	14:34:03	39,566	39,010	69,042	1,328	1,922	2,864	1,379	38
3/3/2012	15:47:59		11,346	907		\$58	60	-	
3/3/2012	17:21:11	31,426	43,634	57,937	1,020	2,141	6,916		
3/3/2012	19:36:07		4,501	5,401	•	2,912	330		
3/3/2012	21:57:27		14,255	1,394	•	22,466	60	-	
3/3/2012	22:24:43	÷		•	•	386		-	

Source: Jim Janavich ideas.returnonintelligence.com

Introduction ○●○○○○○○ Is this is the market? Transition to telematics 000000000000 Data and results

Going forward to optimal pricing 000000

Companies selling motor insurance based on telematics



イロン イロン イヨン イヨン

UNIVERSITAT:

Introduction		Going forward to optimal pricing
0000000		
Research agenda		

Main questions

Should pay-per-mile replace traditional motor insurance? No

• Will telematics transform motor insurance pricing? Yes

• What detailed telematics data should be collected? Only valuable

Introduction		Going forward to optimal pricing
0000000		
Research agenda		

Main questions

• Should pay-per-mile replace traditional motor insurance? No

• Will telematics transform motor insurance pricing? Yes

• What detailed telematics data should be collected? Only valuable

Introduction		Going forward to optimal pricing
0000000		
Research agenda		

Main questions

• Should pay-per-mile replace traditional motor insurance? No

• Will telematics transform motor insurance pricing? Yes

• What detailed telematics data should be collected? Only valuable

Introduction		Going forward to optimal pricing
0000000		
Basic concepts		

- Usage-Based-Insurance (UBI). Telemetry provides the insurer with detailed information on the use of the vehicle and the **premium is calculated based on usage**.
 - Pay-As-You-Drive (PAYD) automobile insurance is a policy agreement linked to vehicle driven distance.
 - Pay-How-You-Drive (PHYD) considers driving patterns.

Introduction Transit	ion to telematics	Data and results	Going forward to optimal pricing
00000000 0000			
Basic concepts			

- Usage-Based-Insurance (UBI). Telemetry provides the insurer with detailed information on the use of the vehicle and the **premium is calculated based on usage**.
 - Pay-As-You-Drive (PAYD) automobile insurance is a policy agreement linked to vehicle driven distance.
 - Pay-How-You-Drive (PHYD) considers driving patterns.

Introduction Transit	ion to telematics	Data and results	Going forward to optimal pricing
00000000 0000			
Basic concepts			

- Usage-Based-Insurance (UBI). Telemetry provides the insurer with detailed information on the use of the vehicle and the **premium is calculated based on usage**.
 - Pay-As-You-Drive (PAYD) automobile insurance is a policy agreement linked to vehicle driven distance.
 - Pay-How-You-Drive (PHYD) considers driving patterns.

Transition to telematics

Data and results

Going forward to optimal pricing 000000

Some recent papers on telematics pricing

1 The relationship between the distance run by a vehicle and the risk of accident has been discussed by many authors, most of them arguing that this relationship is not proportional (Litman, 2005 and 2011; Langford et al., 2008; Boucher et al., 2013).

- 2 There is evidence of the relationship between speed, type of road, urban and night-time driving and the risk of accident (Rice et al., 2003; Laurie, 2011; Ellison et al, 2015; Wüthrich, 2017; Verbelen et al. 2018; Ma et al. 2018; Gao, Yang and Wüthrich, 2019).
- **3** Telematics information can replace some traditional rating factors and provide a pricing model with the same predictive performance (Verbelen et al. 2018; Ayuso et al., 2016b; Baecke and Bocca, 2017).

Gender: discrimination that turns out to be a proxy

Gender can be replaced by:

km/day (Barcelona approach) or km/trip (Leuven approach)

BARCELONA

8 / 45

Transition to telematics

Data and results

Going forward to optimal pricing 000000

Some recent papers on telematics pricing

- 1 The relationship between the distance run by a vehicle and the risk of accident has been discussed by many authors, most of them arguing that this relationship is not proportional (Litman, 2005 and 2011; Langford et al., 2008; Boucher et al., 2013).
- 2 There is evidence of the relationship between speed, type of road, urban and night-time driving and the risk of accident (Rice et al., 2003; Laurie, 2011; Ellison et al, 2015; Wüthrich, 2017; Verbelen et al. 2018; Ma et al. 2018; Gao, Yang and Wüthrich, 2019).
- **3** Telematics information can replace some traditional rating factors and provide a pricing model with the same predictive performance (Verbelen et al. 2018; Ayuso et al., 2016b; Baecke and Bocca, 2017).

Gender: discrimination that turns out to be a proxy

Gender can be replaced by:

km/day (Barcelona approach) or km/trip (Leuven approach)

BARCELONA

8 / 45

Transition to telematics

Data and results

Going forward to optimal pricing 000000

Some recent papers on telematics pricing

- 1 The relationship between the distance run by a vehicle and the risk of accident has been discussed by many authors, most of them arguing that this relationship is not proportional (Litman, 2005 and 2011; Langford et al., 2008; Boucher et al., 2013).
- 2 There is evidence of the relationship between speed, type of road, urban and night-time driving and the risk of accident (Rice et al., 2003; Laurie, 2011; Ellison et al, 2015; Wüthrich, 2017; Verbelen et al. 2018; Ma et al. 2018; Gao, Yang and Wüthrich, 2019).
- **3** Telematics information can replace some traditional rating factors and provide a pricing model with the same predictive performance (Verbelen et al. 2018; Ayuso et al., 2016b; Baecke and Bocca, 2017).

Gender: discrimination that turns out to be a proxy

Gender can be replaced by:

km/day (Barcelona approach) or km/trip (Leuven approach)

UNIVERSITAT BARCELONA

Transition to telematics

Data and results 00000000000 Going forward to optimal pricing 000000

Some recent papers on telematics pricing

- 1 The relationship between the distance run by a vehicle and the risk of accident has been discussed by many authors, most of them arguing that this relationship is not proportional (Litman, 2005 and 2011; Langford et al., 2008; Boucher et al., 2013).
- 2 There is evidence of the relationship between speed, type of road, urban and night-time driving and the risk of accident (Rice et al., 2003; Laurie, 2011; Ellison et al, 2015; Wüthrich, 2017; Verbelen et al. 2018; Ma et al. 2018; Gao, Yang and Wüthrich, 2019).
- **3** Telematics information can replace some traditional rating factors and provide a pricing model with the same predictive performance (Verbelen et al. 2018; Ayuso et al., 2016b; Baecke and Bocca, 2017).

Gender: discrimination that turns out to be a proxy

Gender can be replaced by:

km/day (Barcelona approach) or km/trip (Leuven approach)

BARCELONA

8 / 45

Introduction			Going forward to optimal pricing
00000000	0000000000	0000000000	000000
What we do			

Information on mileage and driving habits improves the prediction of the **number of claims** (and the **cost of claims**) compared to traditional rating factors and coverage exclusively by time (usually one year).

Semi-autonomous vehicles are expected to contribute to a lower frequency of motor accidents

Our question is:

Introduction ○○○○○●●○	Data and results 0000000000	Going forward to optimal pricing
What we do		

Information on mileage and driving habits improves the prediction of the number of claims (and the cost of claims) compared to traditional rating factors and coverage exclusively by time (usually one year).

Semi-autonomous vehicles are expected to contribute to a lower frequency of motor accidents

Our question is:

Introduction	Transition to telematics	Data and results	Going forward to optimal pricing
What we do			

- Information on mileage and driving habits improves the prediction of the number of claims (and the cost of claims) compared to traditional rating factors and coverage exclusively by time (usually one year).
- Semi-autonomous vehicles are expected to contribute to a lower frequency of motor accidents

Our question is:

Introduction	Transition to telematics	Data and results	Going forward to optimal pricing
What we do			

- Information on mileage and driving habits improves the prediction of the number of claims (and the cost of claims) compared to traditional rating factors and coverage exclusively by time (usually one year).
- Semi-autonomous vehicles are expected to contribute to a lower frequency of motor accidents

Our question is:

Introduction	Transition to telematics	Data and results	Going forward to optimal pricing
00000000	0000000000	0000000000	000000
What we do			

• Distance driven (mileage, exposure to risk) and other telematics data (speed, braking, habits) modify traditional premium calculation.

Our contribution:

- Propose a method to update premiums regularly with telematics data. We create the basis for real-time pricing (not necessary), and real-time prevention.
- Show that the price per mile depends on driving habits and price should not be proportional to distance driven. A zero claim is relatively more frequent for intensive users. Propose a predictive modeling approach for this purpose.
- Derive some open-questions about risk measures to summarize telematics big data and optimal pricing when customers may lapse.

UNIVERSITAT:

10 / 45

イロト イヨト イヨト イヨト

Introduction			Going forward to optimal pricing
00000000	0000000000	0000000000	000000
What we do			

• Distance driven (mileage, exposure to risk) and other telematics data (speed, braking, habits) modify traditional premium calculation.

Our contribution:

- Propose a method to update premiums regularly with telematics data. We create the basis for real-time pricing (not necessary), and real-time prevention.
- Show that the price per mile depends on driving habits and price should not be proportional to distance driven. A zero claim is relatively more frequent for intensive users. Propose a predictive modeling approach for this purpose.
- Derive some open-questions about risk measures to summarize telematics big data and optimal pricing when customers may lapse.

UNIVERSITAT:

10 / 45

・ロト ・回ト ・ヨト ・ヨト

Introduction			Going forward to optimal pricing
00000000	0000000000	0000000000	000000
What we do			

• Distance driven (mileage, exposure to risk) and other telematics data (speed, braking, habits) modify traditional premium calculation.

Our contribution:

- Propose a method to update premiums regularly with telematics data. We create the basis for real-time pricing (not necessary), and real-time prevention.
- Show that the price per mile depends on driving habits and price should not be proportional to distance driven. A zero claim is relatively more frequent for intensive users. Propose a predictive modeling approach for this purpose.
- Derive some open-questions about risk measures to summarize telematics big data and optimal pricing when customers may lapse.

イロン イロン イヨン イヨン

10 / 45

Introduction		Going forward to optimal pricing
00000000		
What we do		

• Distance driven (mileage, exposure to risk) and other telematics data (speed, braking, habits) modify traditional premium calculation.

Our contribution:

- Propose a method to update premiums regularly with telematics data. We create the basis for real-time pricing (not necessary), and real-time prevention.
- Show that the price per mile depends on driving habits and price should not be proportional to distance driven. A zero claim is relatively more frequent for intensive users. Propose a predictive modeling approach for this purpose.
- Derive some open-questions about risk measures to summarize telematics big data and optimal pricing when customers may lapse.

イロン イロン イヨン イヨン

Introduction		Going forward to optimal pricing
00000000		
What we do		

• Distance driven (mileage, exposure to risk) and other telematics data (speed, braking, habits) modify traditional premium calculation.

Our contribution:

- Propose a method to update premiums regularly with telematics data. We create the basis for real-time pricing (not necessary), and real-time prevention.
- Show that the **price per mile depends on driving habits** and price should not be proportional to distance driven. A zero claim is relatively more frequent for intensive users. Propose a predictive modeling approach for this purpose.
- Derive some open-questions about risk measures to summarize telematics big data and optimal pricing when customers may lapse.

イロン イロン イヨン イヨン

Introduction		Going forward to optimal pricing
00000000		
What we do		

• Distance driven (mileage, exposure to risk) and other telematics data (speed, braking, habits) modify traditional premium calculation.

Our contribution:

- Propose a method to update premiums regularly with telematics data. We create the basis for real-time pricing (not necessary), and real-time prevention.
- Show that the price per mile depends on driving habits and price should not be proportional to distance driven. A zero claim is relatively more frequent for intensive users. Propose a predictive modeling approach for this purpose.
- Derive some open-questions about risk measures to summarize telematics big data and optimal pricing when customers may lapse.

イロン イロン イヨン イヨン

0000000 000000000 000000 Why is insurance analytics a good example of big data in applied economics? Social networks Web Policies line of Claims	Introduction			Going forward to optimal pricing
Social networks Web Policies line of Claims				000000
CUSTOMERS	Why is insurance analyt	customers customers diation, rribution		Reserves Provisions Solvency capital
		diation, ribution	C.a.i.io	Provisions Solvency
Mediation, distribution		All files have longitudinal	Claims	

BARCELONA

Transition to telematics

Data and results

Going forward to optimal pricing

ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

2 Transition to telematics

	Transition to telematics	
	• 00 0000000	
Telematics information as compleme	ent/substitute of traditional risk factors	

Going forward to optimal pricing 000000

UNIVERSITAT:

13/45

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

The classical ratemaking model is based on a prediction of the number of claims (usually for one year) times the average claim cost plus some extra loadings.

- Subscript i denotes the ith policy holder in a portfolio of n insureds.
- Given $x_i = (x_{1i}, ..., x_{ki})$ (vector of k covariates), the number of claims Y_i (dependent variable) follows a Poisson distribution with parameter λ_i , which is a function of the linear combination of parameters and regressors, $\beta_0 + \beta_1 x_{i1} + ... + \beta_k x_{ik}$.

$$\mathsf{E}(Y_i|x_i) = \exp(\beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik}) \tag{1}$$

- Classical covariates are age, time since driver's license was issued, driving zone, type of car,...
- The pure premium equals the product of the expected number of claims times the average claim cost. Finally, the premium is obtained once additional margins and safety loadings are included.

	Transition to telematics	Going forward to optimal pricing
	• 00 0000000	
Telematics information as complem	ent/substitute of traditional risk factors	

- Subscript *i* denotes the *i*th policy holder in a portfolio of *n* insureds.
- Given $x_i = (x_{1i}, ..., x_{ki})$ (vector of k covariates), the number of claims Y_i (dependent variable) follows a Poisson distribution with parameter λ_i , which is a function of the linear combination of parameters and regressors, $\beta_0 + \beta_1 x_{i1} + ... + \beta_k x_{ik}$.

$$E(Y_i|x_i) = \exp(\beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik})$$
(1)

イロト イヨト イヨト イヨト 三日

- Classical covariates are age, time since driver's license was issued, driving zone, type of car,...
- The pure premium equals the product of the expected number of claims times the average claim cost. Finally, the premium is obtained once additional margins and safety loadings are included.

	Transition to telematics	Going forward to optimal pricing
	• 00 0000000	
Telematics information as complem	ent/substitute of traditional risk factors	

- Subscript *i* denotes the *i*th policy holder in a portfolio of *n* insureds.
- Given $x_i = (x_{1i}, ..., x_{ki})$ (vector of k covariates), the number of claims Y_i (dependent variable) follows a Poisson distribution with parameter λ_i , which is a function of the linear combination of parameters and regressors, $\beta_0 + \beta_1 x_{i1} + ... + \beta_k x_{ik}$.

$$E(Y_i|x_i) = exp(\beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik})$$
(1)

- Classical covariates are age, time since driver's license was issued, driving zone, type of car,...
- The pure premium equals the product of the expected number of claims times the average claim cost. Finally, the premium is obtained once additional margins and safety loadings are included.

	Transition to telematics	Going forward to optimal pricing
	• 00 0000000	
Telematics information as complem	ent/substitute of traditional risk factors	

- Subscript *i* denotes the *i*th policy holder in a portfolio of *n* insureds.
- Given $x_i = (x_{1i}, ..., x_{ki})$ (vector of k covariates), the number of claims Y_i (dependent variable) follows a Poisson distribution with parameter λ_i , which is a function of the linear combination of parameters and regressors, $\beta_0 + \beta_1 x_{i1} + ... + \beta_k x_{ik}$.

$$E(Y_i|x_i) = exp(\beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik})$$
(1)

イロト イヨト イヨト イヨト 三日

- Classical covariates are age, time since driver's license was issued, driving zone, type of car,...
- The pure premium equals the product of the expected number of claims times the average claim cost. Finally, the premium is obtained once additional margins and safety loadings are included.

	Transition to telematics	Going forward to optimal pricing
	• 00 0000000	
Telematics information as complem	ent/substitute of traditional risk factors	

- Subscript *i* denotes the *i*th policy holder in a portfolio of *n* insureds.
- Given $x_i = (x_{1i}, ..., x_{ki})$ (vector of k covariates), the number of claims Y_i (dependent variable) follows a Poisson distribution with parameter λ_i , which is a function of the linear combination of parameters and regressors, $\beta_0 + \beta_1 x_{i1} + ... + \beta_k x_{ik}$.

$$E(Y_i|x_i) = exp(\beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik})$$
(1)

イロト イヨト イヨト イヨト 三日

- Classical covariates are age, time since driver's license was issued, driving zone, type of car,...
- The **pure premium** equals the product of the expected number of claims times the average claim cost. Finally, the **premium** is obtained once additional margins and safety loadings are included.

 Introduction
 Transition to telematics
 Data and results
 Going forward to optimal pricing

 0000000
 000000000
 000000000
 00000000

 Telematics
 Transportation
 Transportation

 https://doi.org/10.1007/s11116-018-9890-7
 Image: ConstMark

Improving automobile insurance ratemaking using telematics: incorporating mileage and driver behaviour data

Mercedes Ayuso¹ · Montserrat Guillen¹ · Jens Perch Nielsen²

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract We show how data collected from a GPS device can be incorporated in motor insurance ratemaking. The calculation of premium rates based upon driver behaviour represents an opportunity for the insurance sector. Our approach is based on count data regression models for frequency, where exposure is driven by the distance travelled and additional parameters that capture characteristics of automobile usage and which may affect claiming behaviour. We propose implementing a classical frequency model that is updated with telemetrics information. We illustrate the method using real data from usage-based insurance policies. Results show that not only the distance travelled by the driver, but also driver habits, significantly influence the expected number of accidents and, hence, the cost of insurance coverage. This paper provides a methodology including a transition pricing transferring knowledge and experience that the company already had before the telematics data arrived to the new world including transferring knowled including telematics information.

In **Transportation** (2018) we proposed a method for assessing the influence on the expected frequency of usage-based variables which can be viewed as a **correction of the classical ratemaking model**. A two-step procedure:

- Step 1: Let Y_i be the frequency estimate obtained as a function of the classical explanatory covariates x_i = (x_{i1},..., x_{ik}).
- Step 2: Let $z_i = (z_{i1}, \ldots, z_{il})$ be the information collected periodically from a telematics unit. Then, the prediction from usage-based insurance information is a correction such that:

 $E(Y_i^{UBI}|z_i, \hat{Y}_i) = \hat{Y}_i \exp(\eta_0 + \eta_1 z_{i1} + \ldots + \eta_k z_{ik}),$ (2)

where the parameter estimates (η_0,\ldots,η_l) can now be obtained using \hat{Y}_l as an offset.

Note:

This approach is less efficient than a full information model, but it works well in practice. Telematics data are collected on a continuous basis and this correction can be implemented regularly (i.e. on a weekly basis)

UNIVERSITAT:

In **Transportation** (2018) we proposed a method for assessing the influence on the expected frequency of usage-based variables which can be viewed as a **correction of the classical ratemaking model**. A two-step procedure:

- Step 1: Let Ŷ_i be the frequency estimate obtained as a function of the classical explanatory covariates x_i = (x_{i1},..., x_{ik}).
- Step 2: Let $z_i = (z_{i1}, \ldots, z_{il})$ be the information collected periodically from a telematics unit. Then, the prediction from usage-based insurance information is a correction such that:

$$E(Y_i^{UBI}|z_i, \hat{Y}_i) = \hat{Y}_i \exp(\eta_0 + \eta_1 z_{i1} + \ldots + \eta_k z_{ik}), \qquad (2)$$

where the parameter estimates (η_0, \ldots, η_l) can now be obtained using \hat{Y}_i as an offset.

Note:

This approach is less efficient than a full information model, but it works well in practice. Telematics data are collected on a continuous basis and this correction can be implemented regularly (i.e. on a weekly basis)

DNIVERSITAT: BARCELONA 15 / 45

In **Transportation** (2018) we proposed a method for assessing the influence on the expected frequency of usage-based variables which can be viewed as a **correction of the classical ratemaking model**. A two-step procedure:

- Step 1: Let Ŷ_i be the frequency estimate obtained as a function of the classical explanatory covariates x_i = (x_{i1},..., x_{ik}).
- Step 2: Let $z_i = (z_{i1}, \ldots, z_{il})$ be the information collected periodically from a telematics unit. Then, the prediction from usage-based insurance information is a correction such that:

$$E(Y_i^{UBI}|z_i, \hat{Y}_i) = \hat{Y}_i \exp(\eta_0 + \eta_1 z_{i1} + \ldots + \eta_k z_{ik}), \qquad (2)$$

where the parameter estimates (η_0, \ldots, η_l) can now be obtained using \hat{Y}_i as an offset.

Note:

This approach is less efficient than a full information model, but it works well in practice. Telematics data are collected on a continuous basis and this correction can be implemented regularly (i.e. on a weekly basis)

UNIVERSITAT: BARCELONA O Q (~ 15 / 45

In **Transportation** (2018) we proposed a method for assessing the influence on the expected frequency of usage-based variables which can be viewed as a **correction of the classical ratemaking model**. A two-step procedure:

- Step 1: Let Ŷ_i be the frequency estimate obtained as a function of the classical explanatory covariates x_i = (x_{i1},..., x_{ik}).
- Step 2: Let $z_i = (z_{i1}, \ldots, z_{il})$ be the information collected periodically from a telematics unit. Then, the prediction from usage-based insurance information is a correction such that:

$$E(Y_i^{UBI}|z_i, \hat{Y}_i) = \hat{Y}_i \exp(\eta_0 + \eta_1 z_{i1} + \ldots + \eta_k z_{ik}), \qquad (2)$$

where the parameter estimates (η_0, \ldots, η_l) can now be obtained using \hat{Y}_i as an offset.

Note:

This approach is less efficient than a full information model, but it works well in practice. Telematics data are collected on a continuous basis and this correction can be implemented regularly (i.e. on a weekly basis)

Transition to telematics

16 / 45

Models with an excess of zeros

Risk Analysis Risk Analysis

The use of telematics devices to improve automobile insurance rates

DOI:10.1111/risa.13172

Publication status

Article accepted on 9 July, 2018

Guillen, M. et al (2018)

Most automobile insurance databases contain a large number of policyholders with zero claims. This high frequency of zeros may reflect the fact that some insureds make little use of their vehicle, or that they do not wish to make a claim for small accidents in order to avoid an increase in their premium, but it might also be because of good driving. We analyse information on exposure to risk and driving habits using telematics data from a Pav-as-you-Drive sample of insureds. We include distance travelled per year as part of an offset in a zero- inflated Poisson model to predict the excess of zeros. We show the existence of a learning effect for large values of distance travelled, so that longer driving should result in higher premium, but there should be a discount for drivers that accumulate longer distances over time due to the increased proportion of zero claims. We confirm that speed limit violations and driving in urban areas increase the expected number of accident claims. We discuss how telematics information can be used to design better insurance and to improve traffic safety.

	Transition to telematics	Going forward to optimal pricing
	0000000000	
Models with an excess of zeros		

In **Risk Analysis** (2018) we propose to include the distance travelled per year as an offset in a Zero Inflated Poisson model to predict the number of claims in *Pay as You Drive* insurance.

• The Poisson model with exposure: Let us call T_i the exposure factor for policy holder *i*, in our case $T_i = ln(D_i)$, where Di indicates distance travelled, then:

$$E(Y_i|x_i, T_i) = D_i \exp(\beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik}) = D_i \lambda_i \qquad (3)$$

イロト イヨト イヨト イヨト 三日

Excess of zeros exists because:

- Some insureds do not use their car and so they do not have claims
- Some insured acquire exceptionally good driving skills and they do not have claims (*learning curve*).

	Transition to telematics	Going forward to optimal pricing
	0000000000	
Models with an excess of zeros		

• The Zero-inflated Poisson (ZIP) model : Now the probability of not suffering an accident is

$$P(Y_i = 0) = p_i + (1 - p_i)P(Y^* = 0)$$
(4)

where p_i is the probability of excess of zeros. Y_i^* follows a Poisson distribution with parameter $exp(\beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik})$, and p_i may depend on some covariates.

	Transition to telematics	Going forward to optimal pricing
	0000000000	
Models with an excess of zeros		

We assume that p_i is the probability of an excess of zeros, and it is specified as a logistic regression model such that

$$p_i = \frac{exp(\alpha_0 + \alpha_1 \ln(D_i))}{1 + exp(\alpha_0 + \alpha_1 \ln(D_i))}.$$
(5)

The Poisson model for Y^* is specified as follows, with an exposure

 $E(Y_i^*|x_i, T_i) = D_i exp(\beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik}) = D_i \lambda_i = exp(ln(D_i))\lambda_i = exp(T_i)\lambda_i$, where $T_i = ln(D_i)$. The expectation of the Poisson part is:

$$(1-p_i)E(Y_i^*|x_i,T_i) = \frac{1}{1+exp(\alpha_0+\alpha_1\ln(D_i))}D_i\lambda_i = D_i^*\lambda_i \quad (6)$$

where $D_i^* = \frac{D_i}{1 + exp(\alpha_0 + \alpha_1 \ln(D_i))}$ is a transformation of the original measure of exposure (distance driven) D_i .

19 / 45

	Transition to telematics	Going forward to optimal pricing
	000 00000 000	
Models with an excess of zeros		

So, when we include zero-inflation there is a transformation of the exposure in the Poisson part of the model.

- When D_i is big then $D_i^* = \frac{D_i}{1 + exp(\alpha_0 + \alpha_1 \ln(D_i))}$ tends to zero if $\alpha_1 > 1$.
- When $\alpha_1 = 1$ then D_i^* tends to constant $\frac{1}{\exp(\alpha_0)}$ when D_i increases.
- Assuming that $D_i \ge 1$, when $\alpha_1 > 1$ this is a concave transformation that scales exposure into the interval $\left[0, \frac{1}{1+exp(\alpha_0)}\right]$. So, the larger the exposure the smaller the value whereas the smaller the exposure the larger the value.
- Assuming that D_i ≥ 1, when α₁ ≤ 1 then the transformation is a change of scale to the interval [1 + exp(α₀), +∞).

	Transition to telematics	Going forward to optimal pricing
	000 00000 000	
Models with an excess of zeros		

So, when we include zero-inflation there is a transformation of the exposure in the Poisson part of the model.

- When D_i is big then $D_i^* = \frac{D_i}{1 + exp(\alpha_0 + \alpha_1 \ln(D_i))}$ tends to zero if $\alpha_1 > 1$.
- When $\alpha_1 = 1$ then D_i^* tends to constant $\frac{1}{exp(\alpha_0)}$ when D_i increases.
- Assuming that $D_i \ge 1$, when $\alpha_1 > 1$ this is a concave transformation that scales exposure into the interval $\left[0, \frac{1}{1+exp(\alpha_0)}\right]$. So, the larger the exposure the smaller the value whereas the smaller the exposure the larger the value.
- Assuming that D_i ≥ 1, when α₁ ≤ 1 then the transformation is a change of scale to the interval [1 + exp(α₀), +∞).

イロト イヨト イヨト イヨト 二日

	Transition to telematics	Going forward to optimal pricing
	000 00000 000	
Models with an excess of zeros		

So, when we include zero-inflation there is a transformation of the exposure in the Poisson part of the model.

- When D_i is big then $D_i^* = \frac{D_i}{1 + exp(\alpha_0 + \alpha_1 \ln(D_i))}$ tends to zero if $\alpha_1 > 1$.
- When $\alpha_1 = 1$ then D_i^* tends to constant $\frac{1}{e^{xp(\alpha_0)}}$ when D_i increases.
- Assuming that $D_i \ge 1$, when $\alpha_1 > 1$ this is a concave transformation that scales exposure into the interval $\left[0, \frac{1}{1+exp(\alpha_0)}\right]$. So, the larger the exposure the smaller the value whereas the smaller the exposure the larger the value.
- Assuming that D_i ≥ 1, when α₁ ≤ 1 then the transformation is a change of scale to the interval [1 + exp(α₀), +∞).

イロト イヨト イヨト イヨト 二日

	Transition to telematics	Going forward to optimal pricing
	000 00000 000	
Models with an excess of zeros		

So, when we include zero-inflation there is a transformation of the exposure in the Poisson part of the model.

- When D_i is big then $D_i^* = \frac{D_i}{1 + exp(\alpha_0 + \alpha_1 \ln(D_i))}$ tends to zero if $\alpha_1 > 1$.
- When $\alpha_1 = 1$ then D_i^* tends to constant $\frac{1}{e^{xp(\alpha_0)}}$ when D_i increases.
- Assuming that $D_i \ge 1$, when $\alpha_1 > 1$ this is a concave transformation that scales exposure into the interval $\left[0, \frac{1}{1+exp(\alpha_0)}\right]$. So, the larger the exposure the smaller the value whereas the smaller the exposure the larger the value.
- Assuming that $D_i \ge 1$, when $\alpha_1 \le 1$ then the transformation is a change of scale to the interval $\left[\frac{1}{1+exp(\alpha_0)}, +\infty\right)$.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・ ヨ

	Transition to telematics	Going forward to optimal pricing
	000 0000 00	
Models with an excess of zeros		

If we look at the logistic regression part, we can also derive the following expression:

$$p_{i} = \frac{\exp(\alpha_{0} + \alpha_{1}\ln(D_{i}))}{1 + \exp(\alpha_{0} + \alpha_{1}\ln(D_{i}))} = \frac{\exp(\alpha_{0} + \alpha_{1}\ln(D_{i}))}{1 + \exp(\alpha_{0} + \alpha_{1}\ln(D_{i}))} \frac{D_{i}}{D_{i}} =$$

$$\exp(\alpha_{0} + \alpha_{1}\ln(D_{i})) \frac{D_{i}}{1 + \exp(\alpha_{0} + \alpha_{1}\ln(D_{i}))} \frac{1}{D_{i}} = \exp(\alpha_{0} + \alpha_{1}\ln(D_{i})) \frac{D_{i}^{*}}{D_{i}}$$
(7)

So, the probability of zero excess (p_i) can be understood as a rescaling of the relative transformed exposure.

Interestingly, when $\alpha_1 < 0$ then note that p_i tends to zero when D_i increases, whereas when $\alpha_1 > 0$ then p_i tends to one when D_i increases. In the empirical part we find $\alpha_1 > 0$, which means that there is a learning effect and the excess of zeros is more important than the Poisson part when distance driven increases.

Transition to telematics

Data and results

Going forward to optimal pricing 000000

Models for near-misses

Excessive braking or acceleration and other risky events

North American Actuarial Journal, 0(0), 1–11, 2019 (2) 2019 Society of Actuaries ISSN: 1092-0277 print / 2325-0453 online DOI: 10.1080/10920277.2019.1627221 Routledge

R Check for updates

Can Automobile Insurance Telematics Predict the Risk of Near-Miss Events?

Montserrat Guillen,¹ , Jens Perch Nielsen,² Ana M. Pérez-Marín,³ and Valandis Elpidorou⁴

Department of Econometrics, Riskcenter-IREA, Universitat de Barcelona, Barcelona, Spain ²Cass Business School, City, University of London, London, United Kingdom ³Department of Econometrics, Riskcenter-IREA, Universitat de Barcelona, Barcelona, Spain ⁴Arch Reinsurance Eurone Underwritine doc Ireland, Dublin, Ireland

Telematics data from usega-based motor insurance provide valuable information - indusing values usega, attitude issued specifica, and time and properiors on of transmontrum during, which can be used for rarinasing. Addisional information on acceleration, braking, and correcting can likewise be notably simplyed to identify sucremise centra, a concept takes from values in the strain of the

1. INTRODUCTION AND MOTIVATION

Before the emergence of telematics, insujers had no verifiable information on the driving patterns and real vehicle usage of the insured. Driving incrumstances and systic could only be determined, and then indirectly, in the specific case of an accident. Today, in contrast, telematics provides a novel source of data for risk classification hefore an accident, or even before a dargroup server, in what imagers refer to as a "near image". A near miss— a near taken for maximum safety, where reports

- Acceleration event positive difference between the maximum acceleration reading and the acceleration detected in the first reading above the acceleration event detection threshold (set at 6m/s², see Hynes & Dickey, 2008).
- **Breaking event** same as acceleration, with a minus sign.
- **Cornering event** larger than one ratio between the speed of a reading and the maximum speed possible during a turn for the vehicle to stay on track.

We conclude that night-time driving is associated with a lower risk of cornering events, urban driving increases the risk of braking events and speeding is associated with acceleration events.

Pricing versus safety

Ethical question: should all drivers be penalized equally for each excessive near-miss event regardless of their driving zone?

- Acceleration event positive difference between the maximum acceleration reading and the acceleration detected in the first reading above the acceleration event detection threshold (set at 6m/s², see Hynes & Dickey, 2008).
- **Breaking event** same as acceleration, with a minus sign.
- **Cornering event** larger than one ratio between the speed of a reading and the maximum speed possible during a turn for the vehicle to stay on track.

We conclude that night-time driving is associated with a lower risk of cornering events, urban driving increases the risk of braking events and speeding is associated with acceleration events.

Pricing versus safety

Ethical question: should all drivers be penalized equally for each excessive near-miss event regardless of their driving zone?

- Acceleration event positive difference between the maximum acceleration reading and the acceleration detected in the first reading above the acceleration event detection threshold (set at 6m/s², see Hynes & Dickey, 2008).
- **Breaking event** same as acceleration, with a minus sign.
- **Cornering event** larger than one ratio between the speed of a reading and the maximum speed possible during a turn for the vehicle to stay on track.

We conclude that night-time driving is associated with a lower risk of cornering events, urban driving increases the risk of braking events and speeding is associated with acceleration events.

Pricing versus safety

Ethical question: should all drivers be penalized equally for each excessive near-miss event regardless of their driving zone?

- Acceleration event positive difference between the maximum acceleration reading and the acceleration detected in the first reading above the acceleration event detection threshold (set at 6m/s², see Hynes & Dickey, 2008).
- **Breaking event** same as acceleration, with a minus sign.
- **Cornering event** larger than one ratio between the speed of a reading and the maximum speed possible during a turn for the vehicle to stay on track.

We conclude that night-time driving is associated with a lower risk of cornering events, urban driving increases the risk of braking events and speeding is associated with acceleration events.

Pricing versus safety

Ethical question: should all drivers be penalized equally for each excessive near-miss event regardless of their driving zone?

- Acceleration event positive difference between the maximum acceleration reading and the acceleration detected in the first reading above the acceleration event detection threshold (set at 6m/s², see Hynes & Dickey, 2008).
- **Breaking event** same as acceleration, with a minus sign.
- **Cornering event** larger than one ratio between the speed of a reading and the maximum speed possible during a turn for the vehicle to stay on track.

We conclude that night-time driving is associated with a lower risk of cornering events, urban driving increases the risk of braking events and speeding is associated with acceleration events.

Pricing versus safety

Ethical question: should all drivers be penalized equally for each excessive near-miss event regardless of their driving zone?

Fransition to telematics

Data and results

Going forward to optimal pricing

3 Data and results

Transition to telemati

2009

Data and results

Going forward to optimal pricing

Information on the data sets

NA

イロン 人間 とくほ とくほう

Information on the data sets

Transition to telemati

Data and results

Going forward to optimal pricing 000000

Information on the data sets

Transition to telemati

Data and results

Going forward to optimal pricing

MAPFRE

2019

Manda tu pregunta a Rafa Nadal usando el hashtag

🕑 #MAPFREpreguntaRafa

Transition to telematics

Data and results

Going forward to optimal pricing 000000

Zero-inflation for the Number of Claims Empirical application based on 25,014 insureds with car insurance coverage throughout 2011, that is, individuals exposed to the risk for a **full year**.

Number of claims	Absolute frequency per driver			
	All claims	Claims at fault	Claims not at fault	
0	20,608	22,837	22,432	
1	3,310	1,750	2,111	
2	889	385	424	
3	165	37	40	
4	34	4	6	
5	7	1	1	
6	1	0	0	

Table I Frequency of claims per driver (n=25 014)

One insured driver had 6 claims, 2 were at fault and 4 where not at fault.

 Table II. Descriptive statistics for the risk exposure indicator (total kilometres travelled per year in 000s)

	All Sample $n = 25,014$	Drivers with no claims n = 20,608 (82.4%)	Drivers with claims $n = 4,406 (17.6\%)$
Mean	7.16	6.99	7.96
1st Quartile	4.14	4.00	4.87
Median	6.46	6.28	7.22
3rd Quartile	9.40	9.22	10.30
Standard Deviation	4.19	4.14	4.35

・ロ・ 4団・ 4目・ 4団・ 4日・

Introduction 00000000	Data and results 00000000000	Going forward to optimal pricing
Information on the data sets		

Table 2 Descriptive statistics by claims (quantitative variables)

	All sample N=25,014		Drivers with no claims N=20,608 (82.4%)		Drivers with claims N=4406 (17.6%)	
	Mean	SD	Mean	SD	Mean	SD
Age	27.57	3.09	27.65	3.09	27.18	3.10
Age driving licence	7.17	3.05	7.27	3.07	6.73	2.94
Vehicle age	8.75	4.17	8.76	4.19	8.69	4.11
Power	97.22	27.77	96.98	27.83	98.36	27.46
Km per year (000s)	7.16	4.19	6.99	4.14	7.96	4.35
Km per year at night (%)	6.91	6.35	6.85	6.32	7.16	6.49
Km per year over speed limit (%)	6.33	6.83	6.28	6.87	6.60	6.59
Urban km per year (%)	25.87	14.36	25.51	14.31	27.56	14.47

Table 3 Descriptive statistics by claims (categorical variables)

	All sample N=25,014		Drivers with $n = 20,608$ (8)		Drivers with c N=4406 (17.4)		
	Frequency	Percent	Frequency	Percent	Frequency	Percent	
Gender							
Men	12,235	48.91	10,018	48.61	2217	50.32	
Women	12,779	51.09	10,590	51.39	2189	49.68	
Parking							
Yes	19,356	77.38	15,912	77.21	3444	78.17	
No	5658	22.62	4696	22.79	962	21.83	Riskerner UNIVERS

Introduction 00000000 Two step correction Transition to telematic 00000000000 Data and results

Going forward to optimal pricing

Poisson model results. All types of claims.

Table 6. Poisson model results with offset km	n per year. All claim types (n=25,014)
---	--

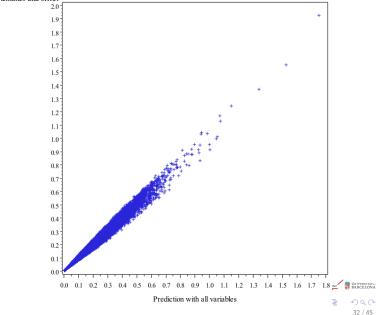
	All variables		Non-telematics		Telematics		Telematics with offsets (Log of prediction of Non-telematics model - Column 2)	
	Coefficient	(p-value)	Coefficient	(p-value)	Coefficient	(p-value)		
Intercept	-2.193	0.024	-0.472	0.625	-4.219	<.0001	-0.731	<.0001
Age	-0.145	0.043	-0.200	0.005				
Age ²	0.003	0.040	0.004	0.005				
Male	-0.086	0.002	-0.049	0.076				
Age Driving License	-0.061	<.0001	-0.076	<.0001				
Vehicle Age	0.015	<.0001	0.022	<.0001				
Power	0.003	<.0001	0.001	0.063				
Parking	0.034	0.292	0.034	0.299				
Log of km per year (000s)	1.000		1.000		1.000		1.000	
Km per year at night (%)	-0.008	0.051			-0.005	0.161	-0.009	0.017
Km per year at night (%) ²	0.0002	0.062			0.0001	0.193	0.0002	0.033
Km per year over speed Limit (%)	0.015	0.004			0.014	0.006	0.019	<.001
Km per year over speed Limit (%) ²	-0.001	0.001			-0.001	0.003	-0.001	<.001
Urban km per year (%)	0.029	<.0001			0.031	<.0001	0.028	<.0001
AIC	29,631	.281	30,624	.100	29,809	179	29,658	8.447
BIC	29,736	5.934	30,689	0.117	29,857	.942	29,707	7.210
LogL	-13,742	2.650	-14,24	4.060	-13,83	8.600	-13,76	3.230
Chi-2	1.357.220	< 0.001	354,400	< 0.001	1,165,320	< 0.001	1.316.060	< 0.001

	Data and results	Going forward to optimal pricing
	00000 0000 0	
Two step correction		

Concordant predictions of all models (in percentages).

	All variables	Non-telematics	Telematics	Telematics with offsets
Poisson model results. All types of claims	62.28	55.91	61.34	62.10
Poisson model results with off- sets (Log of Km per year in thousands). All types of claims	62.15	58.60	61.18	62.05
Poisson model results. Claims where the policyholder is guilty	62.70	57.72	61.13	62.65
Poisson model results with off- sets (Log of Km per year in thousands). Claims where the policyholder is guilty	62.38	58.96	60.89	62.43

Prediction with telematics and offset



Introduction 00000000 Two step correction I ransition to telemati

Data and results

Going forward to optimal pricing

Table IV. Zero-inflated Poisson model with offsets (Log of km per year in 000s). All types of claims.

	All var	iables	(Only sig	nificant)	Non-teles	matics	Telem	atics
	Coefficient	(p-value)	Coefficient	(p-value)	Coefficient	(p-value)	Coefficient	(p-value)
Poisson part								
Intercept	-2.148	0.045	-3,396	<.001	-0.829	0.440	-3,461	<.001
Age	-0.094	0.232			-0.123	0.121		
Age ²	0.002	0.221			0.002	0.131		
Male	-0.068	0.029	-0.074	0.017	-0.011	0.719		
Age Driving Licence	-0.059	<.001	-0.056	<.001	-0.067	<.001		
Vehicle Age	0.014	<.001	0.014	<.001	0.017	<.001		
Power	0.003	<.001	0.003	<.001	0.001	0.017		
Parking	0.029	0.420			0.032	0.381		
Log of km per year (thousands) - offset	1.000	-	1.000		1.000		1.000	
Km per year at night (%)	-0.004	0.312					-0.001	0.771
Km per year at night (%)2	0.0001	0.467					0.000	0.931
Km per year over speed limit (%)	0.019	0.001	0.019	0.001			0.018	0.00
Km per year over speed limit (%) ²	-0.001	0.001	-0.001	0.001			-0.001	0.00
Urban km per year (%)	0.026	<.001	0.026	<.001			0.027	<.00
Zero-inflation part								
Intercept (Logit)	-0.847	<.001	-0.857	<.001	-1.639	<.001	-0.795	<.001
Log of km per year	0.404	<.001	0.410	<.001	0.824	<.001	0.406	<.001
(thousands) (Logit)								
AIC	28,87	7.112	28,87	0.556	29,427	.423	29,005	.172
BIC	28,99	0.019	28,95	1.828	29,508	.694	29,070	.189

<u>Riscontry</u> 開始REELONA ・ロト ・ (日) ・ (H) \cdot (H) \cdot

	Data and results	Going forward to optimal pricing
	00000 0000 0	
Two step correction		

Concordant predictions of all models (in percentages).

	All variables	Non-telematics	Telematics	Telematics with offsets
Zero Poisson model results with offsets (Log of Km per year in thousands). All types of claims	62.36	59.10	61.39	62.20
Poisson model results with off- sets (Log ok Km per year in thousands). All types of claims	62.15	58.60	61.18	62.05
Zero Poisson model results with offsets (Log of Km per year in thousands). Claims where the policyholder is at fault	62.71	59.85	61.17	62.77
Poisson model results with off- sets (Log ok Km per year in thousands). Claims where the policyholder is at fault	62.38	58.96	60.89	62.43

Introduction 00000000 Other models Transition to telematics

Data and results

Going forward to optimal pricing

Changing driving habits: speed reduction Cost of claims with telematics information Conditional quantile as risk predictor

Fransition to telematics

Data and results

Going forward to optimal pricing

a C

4 Going forward to optimal pricing

Transition to telematic: 000000000000 Data and results

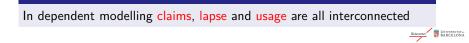
Going forward to optimal pricing

Linear models	Longitudinal and panel data models	Bayesian regression models
• Regression with categorical dependent variables	Linear mixed models	Generalized additive models and nonparametric regression
Regression with count-dependent variables	Credibility and regression modeling	Non-linear mixed models
Generalized linear models	Fat-tailed regression models	Claims triangles/loss reserves
Frequency and severity models	Spatial modeling	Survival models
	Unsupervised learning	Transition modeling

Transition to telematic 00000000000 Data and results

Going forward to optimal pricing

Pricing and Personalization



Transition to telematic 00000000000 Data and results

Going forward to optimal pricing

Pricing and Personalization

Introduction	Data and results	Going forward to optimal pricing
00000000	0000000000	●○○○○○
Further research		

Innovations create the demand for new insurance products for which there is no historical information and so, no mathematical way of measuring the risk of an accident.

		Going forward to optimal pricing
		00000
Further research		

Challenge

The adaptation to digital innovations in the insurance companies themselves

- 1) Central role of data chief officer (CDO)
- 2) Promote CEOs cross-sectional vision of data analytics

3) Let data speak, Data-speak language is more than a number. **Analytics should express conclusions in sentences**, analysts should find the meaning to formulas, algorithms, figures and digits.

イロト イヨト イヨト イヨト

Data and results

Going forward to optimal pricing 000000

UNIVERSITAT:

42 / 45

・ロト ・回ト ・ヨト ・ヨト

What have we learned?

1) The statistics on driving style are much more informative than the traditional rating factors

2) The level of personalization and the role of insurance changes

3) Insurance is reinvented in order to protect people and prevent accidents.

What comes ahead?

Insurance as a utility for protection, not only for compensation

Insurance pools

Autonomous/assisted driving. Joint ventures insurers-manufacturers

Data and results

Going forward to optimal pricing 000000

What have we learned?

1) The statistics on driving style are much more informative than the traditional rating factors

2) The level of personalization and the role of insurance changes

3) Insurance is reinvented in order to protect people and prevent accidents.

What comes ahead?

Insurance as a utility for protection, not only for compensation

Insurance pools

Autonomous/assisted driving. Joint ventures insurers-manufacturers

UNIVERSITATIS BARCELONA 42 / 45

イロト イポト イヨト イヨト

		Going forward to optimal pricing
		000000
Our list of papers		

- Denuit, M., Guillen, M. and Trufin, J. (2019) "Multivariate credibility modeling for usage-based motor insurance pricing with behavioural data" Annals of Actuarial Science, 13, 2, 378-399.
- Pérez-Marín, A.M. and Guillen, M. (2019) "The transition towards semi-autonomous vehicle insurance: the contribution of usage-based data ", Accident Analysis and Prevention, 123, 99-106.
- Pérez-Marin, A.M., Ayuso M.M. and Guillen, M. (2019) "Do young insured drivers slow down after suffering an accident?", Transportation Research Part F: Psychology and Behaviour, 62, 690-699.
- Guillen, M., Nielsen, J.P., Ayuso, M. and Pérez-Marín, A.M. (2019) "The use of telematics devices to improve automobile insurance rates", **Risk Analysis**, 39, 3, 662-672.
- Ayuso, M., Guillen, M. and Nielsen, J.P. (2019) "Improving automobile insurance ratemaking using telematics: incorporating mileage and driver behaviour data", Transportation, 46(3), 735-752.
- Boucher, J.P., Coté, S. and Guillen, M. (2018) "Exposure as duration and distance in telematics motor insurance using generalized additive models", Risks, 5(4), 54.
- Ayuso, M., Guillen, M., Pérez-Marín, A.M. (2016a) "Telematics and gender discrimination: some usage-based evidence on whether men's risk of accident differs from women's", Risks, 2016, 4, 10.
- Ayuso, M., Guillen, M., and Pérez-Marín, A.M. (2016b) "Using GPS data to analyse the distance travelled to the first accident at fault in pay-as-you drive insurance", Transportation Research Part C 68, 160-167.

UNIVERSITAT.

43 / 45

イロト イヨト イヨト イヨト 二日

www.ub.edu/riskcenter/guillen

Going forward to optimal pricing 0000000

www.ub.edu/riskcenter/guillen

Transition to telematics

Data and results 0000000000 Going forward to optimal pricing $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Driving data for automobile insurance: will telematics change ratemaking?

Montserrat Guillén

University of Barcelona mguillen@ub.edu www.ub.edu/riskcenter

SAV, Lucerne, Friday 30 August 2019